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Short Papers

Analysis of Planar Structures by an Integral
Approach Using Entire Domain Trial Functions

M. Nadarassin, H. Aubert, and H. Baudrand

Abstract—In this paper, a method based on an integral formulation with
an excitation term is presented. The particularities of this approach lie in
the utilization of entire domain trial functions and in the characterization
of the coupling effect due to the excitation mechanism. The trial functions
are taken as the TE-TM modes of a waveguide whose cross section
corresponds to the shape of the discontinuity. The trial functions are
computed and stored in the memory, then the study of complex planar
structures becomes easy. A complete study is proposed, including the
analysis of the coupling mechanism due to the source interaction and the
characterization of higher order modes influence. This work is followed
by two applications: a multiaxial discontinuity (bend discontinuity) in
microstrip and in CPW. The computed results have been compared with
data furnished by the literature. A good accuracy has been obtained.

1. INTRODUCTION

To overcome the lack of accuracy of the traditional models based
on a quasistatic analysis [1] or an equivalent waveguide consideration
[2], different methods have been developed. However, as it was
pointed out in [3], the CAD softwares which are commercially
available do not take sufficiently the shielding effects of the circuit
into account.

Methods based on an integral formulation seem to be accurate and
rigorous tools for the treatment of this type of problem. Among these
methods, we can distinguish methods lying in an iterative process of
resolution, that is the resolution of an eigenvalue problem, and others
which by the introduction of an excitation source reduce the equations
into an inhomogeneous system via the application of the method of
moments. With that purpose, excitation terms were largely introduced
in the integral methods [3]-[S]. Moreover, the integral methods
become efficient if trial functions have been correctly chosen: so an
important attention must be paid to this choice in order to reduce the
computation time with small system matrix. It’s with this aim that we
have developed in this paper, an integral method with entire domain
trial functions has been developed. L-shaped trial functions expressed
in the entire domain and obtained by an initial computation, allow
the characterization of bend-discontinuities in microstrip lines and
coplanar waveguides. This approach is quite flexible and allows a
rigorous treatment of different structures (Tee, Gap, Bend, and Step).
The implementation of our method is discussed and the numerical
results have been compared with published data.

1. THEORETICAL DEVELOPMENTS

A shielded structure is considered in the theoretical formulation.
The circuits are assumed to be lossless with infinitely thin metalliza-
tion and isotropic substrate. The circuits are placed in an electric wall
cavity in the case of microstrip line and in a magnetic wall cavity in
the case of CPW. The choice of the nature of the wall is made so
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that the compatibility with the excitation sources placed at the port
is ensured.

To explain clearly the development of the theoretical formulation,
we use to a large extent the formalism presented in [6] and [7]. For the
same purpose we treat a simple case: microstrip line. Let ./ and F be
the electric density of current and the electric field on the discontinuity
plane .S, respectively. J is defined according to the magnetic field
H as J = H x n, where n is the normal vector to the discontinuity
plane. The integral equation associated with the problem is

ZJ=ceo )

where Z designates the impedance operator which characterizes the
cavity and eq is the excitation term relative to a magnetic current
AMy. The unknown quantity J is expanded on a basis (g,) of trial
functions which will be explained in more details in Section IV

J:Za,gl. (2)

Next, the application of Galerkin’s procedure transforms (1) into the
following linear system of equations

D {9 Zg))a, = (g e Vi (3)
J
where the inner product is defined by

and 0n.» designates the delta Kronecker function. The resolution of
the matrix system (3) permits the determination of the components
a,. Then, by using a variational formula [8], the input impedance Z,,,
is computed. This impedance value does not correspond to the actual
value of the impedance [5], [9]. The computed impedance is the one
viewed by the source. Therefore, a de-embedding technique must be
developed to obtain the impedance viewed by the fundamental mode.

III. CouPLING EFFECTS ANALYSIS

Many methods have been developed with the aim of extracting
the scattering parameters. Among the techniques presented in the
literature, we can distinguish techniques based on the analysis of
computed current [4] and others lying in the computation of the input
impedance [5] and [9]. In our work, different methods have been
implemented, and finally, a modified approach of [9] has been used
because of its flexibility and its accuracy. Our improvement concerns
the nature of the excitation source eq and allows to avoid numerical
divergence of results arising in [9]. The de-embedding process can
be reduced to the determination of three parameters: .4, B, and C
of a homographic relation

_B
1+C.:

where Z,, is the computed impedance and = denotes the impedance
associated with the fundamental mode. It is clear that A, B, and C
are determined by considering known termination conditions (perfect
short-circuit or perfect open-end). Few computed results are sufficient
to estimate their values. A least-squares method can also be used
to minimize the error. Consequently, the modeling of other circuits
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Fig. 1.
in plane of symmetry.

is made possible. The homographic relation can be represented by
an equivalent network composed of a shunt impedance, a series
impedance, and a transformer. In the approach presented in [5],
a shunt impedance is placed at the port junction in order to take
the disturbance effects of the excitation into account: homographic
relation (5) characterizes this disturbance more accurately, especially
at higher frequencies.

IV. ENTIRE DOMAIN TRIAL FUNCTIONS

As a general rule, the TE-TM modes of a waveguide whose cross
section corresponds to the shape of the planar circuit are taken as
the trial functions basis. This basis is obtained by the resolution of
the Helmbholtz equation in this waveguide. In the case of simple
structures, the latter is expanded in an analytical basis as a short
circuited or open-ended line where the TE-TM modes of a rectangular
guide are taken. In the case of L-shaped waveguide (see Fig. 1),
methods have been developed for the computation of these modes
[10] and no more refinements are needed within the scope of this
paper. Each trial function g; is expanded as below

N M
zgglj—i- Z gz k Region 1
— n=L m=1

gi (©)

N M
Z Gys J + z g2k Region 2.
n=1 m=1

The set of all these trial functions is used to expand the unknown
current density. Note that a small number of functions gives very
accurate numerical results: thus, this approach is not very time-
consuming. The rooftop expansion functions approach is largely
developed in the literature for complex discontinuities, as long as
the structures can be divided into rectangles or triangles [4]. But this
approach generates large matrix systems while our approach using
entire domain trial functions needs very small matrices (see next
section).

In the case of L-shaped trial functions, a wide class of discontinu-
ities as tee, bend, and gap can be easily characterized. The modeling

. Plane of
* Symmetry

¥

Shape of the first four generating functions, (a) and (b) an electric wall inserted in plane of symmetry, (¢) and (d) a magnetic wall inserted

of such discontinuities is achieved by taking into account the different
symmetries of these structures, so that the domain of study is easily
reduced to L-shaped domains in each case and then, the current
is expanded in L-shaped domains. For the computation of the trial
functions, it is important to satisfy the boundary conditions and take
advantage of the symmetries in order to reduce the computation effort.
For instance, for a step or a tee discontinuity a magnetic wall is
ingerted in the plane of symmetry.

Since we have defined the trial functions, the scattering parameters
are obtained by calculating two impedances: Z, (odd-symmetry) and
Z. (even symmetry). These impedances are computed by placing
respectively an electric wall or a magpetic wall in the plane of
symmetry of the structure (Fig. 1). In other terms, we have to
solve twice the system of linear equations (3), in which the trial
functions have been selected with a particular symmetry. For instance,
in the case of a bend discontinuity in microstrip line, we have to
choose the corresponding trial functions: electric wall [Fig. 1(a)
and 1(b)], magnetic wall [Fig. 1(c) and 1(d)]. With these two
impedances corrected by using the relation (5), the impedance matrix
is determined: Z11 = (Ze + Z,)/2 and Z12 = (Z. — Z,)/2. The
S-parameters are immediately deduced.

For CPW structures, as a general rule, the electric field is taken as
unknown and expanded on a basis of trial functions. In that case, the
trial functions are obtained by computing the cutoff wavenumbers of
a waveguide composed of electric walls. The calculation is analog
to that of the microstrip structures, only the excitation term has been
replaced by an impressed current jo defined on the slot.

V. NUMERICAL RESULTS

First, the method is implemented for a bend-discontinuity in
microstrip line. A small number of trial functions (16)~(32) is
sufficient to obtain the convergence of the results. The dimensions
of the structure are the same as those used by [12]: w = 0.635 mm,
h=0635mm, a =318 mm, b = ¢ =127 mm &, = 9.8. The
scattering parameters are calculated for frequencies between 8-20
GHz. The results are compared with the analysis described in [12]
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Fig. 2. Microstrip Bend-discontinuity. Magnitude of S-parameters.
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Fig. 3. Microstrip Bend-discontinuity. Phase of S-parameters.

and [13] (see Fig. 2). We can observe that in [13] the analysis does
not take into account the shielding effects and lies in an open structure
analysis, that is why the magnitude of 511 is always smaller than the
results obtained in this analysis and in [12]. The difference between
the curves increases at higher frequencies because of the box mode
which is a propagating mode. The variations in phase of Si» and
S11 are shown in Fig. 3. Although, the phase of S»; is smaller than
the results published in [12], the difference is not very significant.
Moreover, the tendency of these two curves confirms the importance
of the shielding effects at higher frequencies.

The application of this method to a bend in coplanar waveguide
is presented in Figs. 4 and 5. The figures show the shape of the
magnitude of the computed current in the case where an electric wall
is inserted in the plane of symmetry and in the case of a magnetic
plane inserted in the plane of symmetry. With these two results,
the impedance matrix is deduced, then the scattering parameters are
also computed. One can observe the correctness of the results, at
low frequencies, few trial functions are sufficient to obtain good
results. At high frequencies, another difficulty appears with the second
mode which propagates along the line. In that case a fourth port
network is introduced to take into account the distribution in energy
on the second mode. From the above numerical results, we notice
that a limited number of entire domain trial functions is required to
achieve accurate modeling and consequently the matrix dimensions
are small in all cases. Moreover, the domain of definition of entire
domain trial function is smaller than the one corresponding to the
rooftops: thus, the number of terms in the modal expansion of
each trial function is relatively small compared with the case of
rooftops. Several improvements of our method can be introduced in
this approach as in [4] in order to reduce the computation time: for
instance. once the inner products involved in the calculation are stored
in the memory. only the modal admittances have to be computed
at each frequency. Although our numerical results concern a class
of particular discontinuities (L-shaped discontinuities), the present
approach can be easily developed for discontinuity of complex shape
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Fig. 4. CPW bend-discontinuity, magnitude of the transverse component of
the electric field with a magnetic wall in the plane of symmetry.
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Fig. 5. CPW bend-discontmuity, magnitude of the transverse component of
the electric field with an electric wall in the plane of symmetry.

as long as the TE and TM modes of a waveguide, whose cross section
corresponds to the discontinuity shape can be determined. A method
of segmentation [11] allows this determination without increasing the
matrix dimensions of the system (3).

VI. CONCLUSION

In this paper, a method based on an integral formulation is
presented. As an application, two discontinuities are modeled by
means of this method with entire domain trial functions, which
are in fact the TE-TM modes of a waveguide whose cross section
corresponds to the shape of the discontinuity. The accuracy of this
analysis is proved, only few functions are sufficient to yield good
results. Now, the computer code developed for this study is extended
to others discontinuities like tee, gap, and step in microstrip line and
CPW.
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On the Utilization of Periodic Wavelet
Expansions in the Moment Methods

Gaofeng Wang

Abstract—In this short paper, a new wavelet approach that makes use
of periodic wavelet expansions in the moment methods is presented. The
unknown field or response is expanded in terms of the periodic wavelet
functions. As a wavelet expansion method, the moment-method matrix
is rendered sparsely populated after applying a threshold procedure.
Moreover, this approach circumvents the difficulties in the application
of the conventional wavelet expansions on the real line to finite interval
problems. Numerical study shows that this approach gives better accuracy
than the use of the conventional wavelet expansions on the whole real line.

1. INTRODUCTION

Recently, the wavelet expansion methods have been introduced
to the applications of numerical analysis in electromagnetics (e.g.,
see [1]-[3]). Although the theory of wavelets is a relatively new
area in mathematics, it has found many applications in engineering
areas due to the special properties of wavelets. As a basis, the
wavelet can be employed to express the unknown function in a
series of wavelet functions. The wavelet expansion can adaptively
fit itself to the various length scales associated with the physical
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configuration under study by distributing the localized basis functions
near the discontinuities and the more spatially diffused ones over the
smooth regions. Moreover, the cancellation property of the wavelets
can eliminate, to a great extent, the coupling between the distant
parts of the physical configuration under consideration. Attributed to
these properties, the moment-method matrix obtained by a wavelet
expansion is rendered sparsely populated as shown in [1]-[3].

However, difficulties exist when the unknown function is defined
in finite intervals, while most of the wavelets are developed on
the whole real line. In [1], Steinberg and Leviatan applied the
Battle~-Lemarie wavelet expansion on the real line to the moment
method for solving an electromagnetic coupling problem [1]. Due
to the infinite support of the Battle-Lemarie wavelet, the wavelet
functions must be truncated to fit in the finite definition interval of the
unknown function. The truncated wavelet basis lacks completeness
over the finite interval under consideration. As a consequence,
artificial oscillations appear in the results (e.g., see the magnitude
of the equivalent magnetic current obtained from the truncated
Battle-Lemarie wavelet in Fig. 4 of [1]).

A full wave analysis of microstrip floating line structures by
wavelet expansion method was presented in [2], [3], where a
Sommerfeld-type integral with an intractable kernel (the dyadic
Green's functions for the grounded dielectric slab) was treated by
using Daubechies wavelet. Since the Daubechies wavelet has compact
support, one can easily delete the wavelet or scaling functions that
are beyond the regions of interest, and thus the truncation of the
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